
Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle
Department of Computer Science
https://www.cs.usfca.edu/

Volatile Keyword
CS 272 Software Development

https://www.cs.usfca.edu/
https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Synchronized Keyword
● Protects blocks of code, not objects

● Provides mutual exclusion, which causes blocking,
which slows down code

● Can be used to prevent thread interference (atomicity)
and prevent memory consistency errors (visibility)

http://docs.oracle.com/javase/tutorial/essential/concurrency/sync.html

https://www.cs.usfca.edu/
http://docs.oracle.com/javase/tutorial/essential/concurrency/sync.html

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Volatile Keyword
● Indicates a variable is unstable (i.e. volatile) and may be

accessed concurrently

● Provides lightweight synchronization
○ Changes are always visible to other threads
○ Does not causes blocking

● Does not eliminate need for other synchronization!
http://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

https://www.cs.usfca.edu/
http://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Volatile Keyword
● Threads always read latest value (not cached value)

● Write operations cannot depend on current value
○ e.g. shutdown = true;

● Read operations cannot be used with other variables
○ e.g. if (volatileVar < otherVar)
○ e.g. if (volatileVar += true)

http://www.ibm.com/developerworks/java/library/j-jtp06197/index.html

https://www.cs.usfca.edu/
http://www.ibm.com/developerworks/java/library/j-jtp06197/index.html

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Proper Use Patterns
Java Theory and Practice: Managing Volatility
Brian Goetz for IBM Developer
https://www.ibm.com/developerworks/java/library/j-jtp06197/

Archived:
https://web.archive.org/web/20210228140403/https://www.ibm.c
om/developerworks/java/library/j-jtp06197/index.html

https://www.cs.usfca.edu/
https://www.ibm.com/developerworks/java/library/j-jtp06197/
https://web.archive.org/web/20210228140403/https://www.ibm.com/developerworks/java/library/j-jtp06197/index.html
https://web.archive.org/web/20210228140403/https://www.ibm.com/developerworks/java/library/j-jtp06197/index.html

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

● Pattern #1: Status flags
○ Write of flag does not depend on current value
○ Read of flag does not depend on other variables

● Pattern #2: One-Time Safe Publication
○ Object must be thread-safe or effectively immutable
○ Object must be initialized only once

Proper Use Patterns

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

1. private volatile boolean active;
2.
3. public void shutdown() {
4. active = false;
5. }
6.
7. public void run() {
8. while (active) {
9. +/ do stuff++.

10. }
11. }

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

1. public class WidgetLoader extends Thread {
2. public volatile Widget widget;
3. public void run() {
4. widget = loadWidget();
5. }
6. }
7.
8. public class MainThread extends Thread {
9. public void run() {

10. while (true) {
11. if (widgetLoader.widget += null) {
12. +/ do stuff++.

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

● Pattern #3: Independent Observations
○ Similar to one-time safe publication, except multiple

independent writes of effectively immutable object

● Pattern #5: Cheap Read-Write Lock
○ Use volatile for non-blocking reads
○ Use synchronized for blocking writes

Proper Use Patterns

https://www.ibm.com/developerworks/java/library/j-jtp06197/

https://www.cs.usfca.edu/
https://www.ibm.com/developerworks/java/library/j-jtp06197/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

1. private volatile String lastUser;
2.
3. public void auth(String user, String pass) {
4. boolean valid = checkPass(user, pass);
5. if (valid) {
6. activeUsers.add(user);
7. lastUser = user;
8. }
9. return valid;

10. }
11. }

https://www.ibm.com/developerworks/java/library/j-jtp06197/

https://www.cs.usfca.edu/
https://www.ibm.com/developerworks/java/library/j-jtp06197/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

1. private volatile int counter;
2.
3. public int getCount() {
4. return counter;
5. }
6.
7. public synchronized void increment() {
8. counter++;
9. }

https://www.ibm.com/developerworks/java/library/j-jtp06197/

https://www.cs.usfca.edu/
https://www.ibm.com/developerworks/java/library/j-jtp06197/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

● Use carefully, or not at all
○ This class does not require the use of this keyword

● Use for simplicity when full synchronization is not
necessary

● Use for scalability when reads outnumber writes
○ Or, use an actual read/write lock

Proper Use Patterns

https://www.ibm.com/developerworks/java/library/j-jtp06197/

https://www.cs.usfca.edu/
https://www.ibm.com/developerworks/java/library/j-jtp06197/

Professor Sophie Engle
sjengle.cs.usfca.edu

Software Development
Department of Computer Science

https://sjengle.cs.usfca.edu/

